国产噜噜噜视频在线观看,成人日韩视频,国产精品亚洲自在线播放页码,国产亚洲精彩视频,www.av在线免费观看,亚洲四虎在线,成人国产片免费

背景:
閱讀全文

云南省2017年普通專升本《高等數(shù)學(xué)》考試大綱

[日期:2016-12-15] 來源:德宏職業(yè)學(xué)院

《高等數(shù)學(xué)》考試大綱

一、考試內(nèi)容概述

函數(shù)、極限、連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)和常微分方程的基本概念、基本理論及其基本運算方法和基本運算能力;導(dǎo)數(shù)的幾何意義及其應(yīng)用;微分中值定理(指羅爾中值定理和拉格朗日中值定理)及其應(yīng)用;導(dǎo)數(shù)在求未定式極限及在求函數(shù)的極值、最值和作圖等方面中的應(yīng)用;導(dǎo)數(shù)在經(jīng)濟(jì)方面中的應(yīng)用;積分在幾何和經(jīng)濟(jì)方面中的應(yīng)用。

二、考試形式

考試方式 閉卷筆試

考試滿分 150分(單科成績)

考試時間 120分鐘

三、試題難易程度分布

較易試題 約占50%

中等試題 約占30%

較難試題 約占20%

四、題型及題型分值分布

單項選擇題 約占32%

填空題 約占32%

計算題 約占42%

解答題 約占28%

應(yīng)用題 約占16%

五、內(nèi)容比例

函數(shù)、極限與連續(xù) 約占18%

導(dǎo)數(shù)與微分 約占22%

導(dǎo)數(shù)的應(yīng)用 約占18%

不定積分 約占12%

定積分(含廣義積分)及其應(yīng)用 約占20%

常微分方程初步 約占10%

六、參考教材

1.趙樹螈主編:《微積分》(第三版),中國人民大學(xué)出版社 2008年版。

2.左艷芳、王躍主編:《高等應(yīng)用數(shù)學(xué)》(第1版,上冊),云南大學(xué)出版社2009年版。

3.同濟(jì)大學(xué)數(shù)學(xué)系編:《高等數(shù)學(xué)》(第六版,上冊) (普通高等教育“十一五”21國家級規(guī)劃教材),高等教育出版社 2004年版。

七、考試內(nèi)容及要求

第一部分 函數(shù)、極限與連續(xù)

[函數(shù)]

(一)考試內(nèi)容

1.函數(shù)的概念:函數(shù)的定義;函數(shù)的表示法;分段函數(shù)。

2.函數(shù)的簡單性質(zhì):單調(diào)性;有界性;奇偶性;周期性。

3.反函數(shù):反函數(shù)的定義;反函數(shù)的圖像。

4.函數(shù)的四則運算與復(fù)合運算。

5.基本初等函數(shù):常量函數(shù);冪函數(shù);指數(shù)函數(shù);對數(shù)函數(shù);三角函數(shù);反三角函數(shù)

6.初等函數(shù)。

(二)考試要求

1.理解函數(shù)的概念,會求函數(shù)的定義、表達(dá)式及函數(shù)值;會求分段函數(shù)的定義域、函數(shù)值,并會作出簡單分段函數(shù)的圖像。

2.理解和掌握函數(shù)的單調(diào)性、有界性、奇偶性和周期性,并會判斷所給函數(shù)的類別。

3.了解函數(shù)y=f(x)與其反函數(shù)y=f-1(x)之間的關(guān)系

(定義域、值域和圖形),并會求簡單函數(shù)的反函數(shù)。

4.理解和掌握函數(shù)的四則運算與復(fù)合運算,特別是熟練掌握復(fù)合函數(shù)的復(fù)合過程。

5.掌握基本初等函數(shù)的簡單性質(zhì)及其圖像。

6.了解初等函數(shù)的概念。

7.會建立簡單實際問題的函數(shù)關(guān)系式。

[極限]

(一)考試內(nèi)容

1.?dāng)?shù)列極限的概念:數(shù)列定義;數(shù)列極限的定義。 2.?dāng)?shù)列極限的性質(zhì):唯一性;有界性;四則運算準(zhǔn)則;兩

邊夾準(zhǔn)則;單調(diào)有界準(zhǔn)則。

3.函數(shù)極限的概念:函數(shù)f(x)在點x。處的極限和左、右

極限的定義以及它們之間的關(guān)系;當(dāng)x→∞、x→+∞和x→-∞

時函數(shù)f(x>極限的定義及它們之間的關(guān)系。

4.函數(shù)極限的定理:唯一性定理;四則運算定理。

5.無窮小量和無窮大量的概念:無窮小量的定義;無窮大量的定義;無窮小量的性質(zhì);無窮小量與無窮大量之間的關(guān)系;兩個無窮小量階的比較。

6.兩個重要極限:及它們的運用。

(二)考試要求

1.理解極限的概念(對極限定義中的“c—N”、“s—6”和“ε—M”等的描述不作要求);了解函數(shù)在一點處極限存在的充分與必要條件。

2.了解極限的有關(guān)性質(zhì);熟練掌握極限的四則運算法則。

3.理解無窮小量和無窮大量的概念;掌握無窮小量的性質(zhì)及無窮小量與無窮大量之間的關(guān)系;會進(jìn)行無窮小量階的比較 (高階、低階、同階和等價);會運用等價無窮小量代換求極限。

4.理解極限存在的兩個準(zhǔn)NU(兩邊夾準(zhǔn)NIj和單調(diào)有界準(zhǔn)則)。

5.熟練掌握用兩個重要極限求極限的方法。

6.掌握求極限的基本方法:利用基本極限、極限的運算法則、無窮小量的性質(zhì)、兩個重要極限以及運用等價無窮小量代換求極限的方法。

[連續(xù)]

(一)考試內(nèi)容

1.函數(shù)連續(xù)的概念:函數(shù)在一點處連續(xù)和左、右連續(xù)的定義以及它們之間的關(guān)系;函數(shù)在一點處連續(xù)的充分必要條件;函數(shù)在一個區(qū)間上連續(xù)的概念;函數(shù)的間斷點及其分類。

2.函數(shù)在一點處連續(xù)的性質(zhì):連續(xù)函數(shù)的四則運算法則;復(fù)合函數(shù)的連續(xù)性;反函數(shù)的連續(xù)性。

3.閉區(qū)間上連續(xù)函數(shù)的性質(zhì):有界性定理;最大值和最小值定理;介值性定理(包括零點定理,即根的存在定理)。

4.初等函數(shù)的連續(xù)性。

2.會根據(jù)導(dǎo)數(shù)及其幾何意義求曲線上一點處的切線方程和法線方程。

3.熟練掌握導(dǎo)數(shù)的基本公式、四則運算法則以及復(fù)合函數(shù)的求導(dǎo)方法(重點);會求反函數(shù)的導(dǎo)數(shù)。

4.掌握隱函數(shù)求導(dǎo)法、對數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)法;會求分段函數(shù)的導(dǎo)數(shù)。

5.理解高階導(dǎo)數(shù)的概念;掌握求二階導(dǎo)數(shù)及簡單函數(shù)的n階導(dǎo)數(shù)的方法。

[微分]

(一)考試內(nèi)容

1.微分:微分的定義;微分的幾何意義;可微、可導(dǎo)與連續(xù)三者之間的關(guān)系。

2.微分公式:df(x)=f'(x)dx或dy=y'dx。

3.微分法則與微分的基本公式:微分的四則運算法則;微分的基本公式(主要是基本初等函數(shù)的微分公式);一階微分形式不變性。

(二)考試要求

1.理解函數(shù)的微分概念及其幾何意義;掌握微分法則;了解函數(shù)的可微、可導(dǎo)與連續(xù)三者之間的關(guān)系。

2.熟練掌握微分的四則運算法則和基本公式,并能熟練地計算函數(shù)的微分。

3.了解一階微分形式不變性。

第三部分 導(dǎo)數(shù)的應(yīng)用

(一)考試內(nèi)容

1.中值定理:羅爾(Rdle)中值定理;拉格朗日(La- Fange)中值定理。

2.洛必達(dá)(L’Hospital)法則。

3.函數(shù)的單調(diào)性、極值點、極值和最值。

4.曲線的凹凸性和拐點。

5.曲線的垂直漸近線與水平漸近線。

(二)考試要求

1.理解羅爾中值定理和拉格朗日中值定理的內(nèi)容及其幾何意義;會用羅爾中值定理證明方程根的存在性;會用拉格朗日中值定理證明簡單的不等式。

2,熟練掌握用洛必達(dá)法則求 型與 型未定式極限的方法 (其他未定式不作要求)。

3.理解函數(shù)的單調(diào)性和極值的概念,并熟練掌握利用一階導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法。

4。在掌握求函數(shù)極值點方法的基礎(chǔ)上,會求函數(shù)的最值或最值點以及會據(jù)此解簡單的應(yīng)用問題。

5.理解曲線的凹凸性和拐點的概念,并掌握利用二階導(dǎo)數(shù)判斷曲線的凹凸性和求曲線拐點的方法。

6.會求曲線的垂直漸近線與水平漸近線。

7.會描繪簡單函數(shù)的圖形(包括垂直漸近線和水平漸近線)。

第四部分 不定積分

(一)考試內(nèi)容

1.不定積分的概念:原函數(shù)與不定積分的定義;原函數(shù)存在定理。

2.不定積分的性質(zhì)與公式:不定積分的基本性質(zhì);不定積分的基本積分公式。

3.換元積分法:第一換元積分法(湊微分法);第二換元積分法(直接換元積分法)。

4.分部積分法。

5.一些簡單有理函數(shù)的積分。

(二)考試要求

1.理解原函數(shù)與不定積分的概念及其關(guān)系;了解原函數(shù)存在定理。

2.熟練掌握不定積分的基本性質(zhì)和基本積分公式。

3.熟練掌握不定積分的第一換元法;掌握第二換元法(限于簡單的根式代換和三角代換)。

4.熟練掌握不定積分的分部積分法。

5.會求簡單有理分式函數(shù)的不定積分。

第五部分 定積分(含廣義積分)及其應(yīng)用

[定積分(含廣義積分)]

(一)考試內(nèi)容

1.定積分的概念:定積分的定義及其幾何意義;可積條件。

2.定積分的性質(zhì)。

3.定積分的計算:變上限的定積分;牛頓一萊布尼茨 (Newton—Leibniz)公式;定積分的換元積分法;定積分的分部積分法。

4.廣義積分:無窮區(qū)間的廣義積分;無界函數(shù)的廣義積分 (即瑕積分)。

(二)考試要求

1.理解定積分的概念;熟練掌握定積分的幾何意義;了解可積的條件。

2.掌握定積分的基本性質(zhì)。

3.理解變上限定積分是變上限的函數(shù);掌握對變上限的定積分求導(dǎo)數(shù)的方法。

4.熟練掌握牛頓一萊布尼茨公式。

5.熟練掌握定積分的換元積分法和分部積分法。

6.理解無窮區(qū)間廣義積分的概念,并掌握其計算方法和記住廣義積分dx收斂的條件。

7.了解無界函數(shù)廣義積分的概念,并記住廣義積分(瑕積分)dx收斂的條件。

8.掌握在直角坐標(biāo)系下用定積分計算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體的體積;會用定積分解決一些簡單的經(jīng)濟(jì)應(yīng)用問題。

[定積分的應(yīng)用]

(一)考試內(nèi)容

1.面積和體積:平面圖形的面積;旋轉(zhuǎn)體的體積。

2.經(jīng)濟(jì)應(yīng)用:定積分在經(jīng)濟(jì)中的簡單應(yīng)用。

(二)考試要求

1.掌握在直角坐標(biāo)系下用定積分計算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體的體積。

2.會用定積分解決一些簡單的經(jīng)濟(jì)應(yīng)用問題(如求經(jīng)濟(jì)總量、總收益、總利潤等)。

第六部分 常微分方程初步

[一階微分方程]

(一)考試內(nèi)容

1.微分方程的概念:微分方程的定義、階、解、通解、初始條件和特解等概念。

2.可分離變量的微分方程。

3.一階線性微分方程:一階線性齊次微分方程;一階線性非齊次微分方程。

(二)考試要求

1.理解微分方程的定義;理解微分方程的階、解、通解、初始條件和特解等概念。

2.掌握可分離變量的微分方程的解法。

3.熟練掌握一階線性微分方程的解法(主要是公式解法)。

4.會應(yīng)用微分方程的知識解決一些簡單的實際問題。

[可降階微分方程]

(一)考試內(nèi)容

1.y(n)=f(x)型的方程。

2.Y''=f(x,y')型的方程。

(二)考試要求

1.會用降階法解丁”’y(n)=f(x)型的方程。

2.會用降階法解y''=f(x,y')型的方程。

[二階線性微分方程]

(一)考試內(nèi)容

1.二階線性微分方程解的結(jié)構(gòu)。

2.二階線性常系數(shù)齊次線性微分方程。

3.二階線性常系數(shù)非齊次線性微分方程。

(二)考試要求

1.了解二階線性微分方程解的結(jié)構(gòu)。

2.熟練掌握二階常系數(shù)齊次線性微分方程的解法。

3.了解二階常系數(shù)非齊次線性微分方程的解法[自由項限定為,f(x)=Pn(x)eax,其中Pn(X)為x的n次多項式,a為實常數(shù)]。

4.會應(yīng)用微分方程的知識解決一些簡單的實際問題。

我要咨詢或發(fā)布信息 | 編輯:yangying | 閱讀:
熱門培訓(xùn)課程
熱門培訓(xùn)課程
熱門評論